k- 009-692
DSTO -Gb -00S!

Low Cost INS-GPS Integration
for Navigation
(INS Software Implementation)

N. Luckman

!ch/vs;d tor public releazed

DIETWIBGTION SPATEAIRT B %
i
S Léatribu o Unlimited ,v_,ﬁ

| [APPROVED FOR PUBLIC RELEASE

I@ Commonwealth of Australia |

961009 1

DEPARTMENT’OF DEFENGCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

18

REPRODUL

e e pARI P

D ErELL THIS REPORT

Low Cost INS-GPS Integration for Navigation
(INS Software Implementation)

N. Luckman

. Weapons Systems Division
Aeronautical and Maritime Research Laboratory

DSTO-GD-0081

ABSTRACT

This document describes several versions of software that have been developed to
implement an Inertial Navigation System algorithm. The form of the algorithm is
intended to facilitate the combining of Global Positioning System data into the INS

solution, and a simple example (position and velocity reset) is included in the
software.

RELEASE LIMITATION

Approved for public release DrIC QUALITY IO

DEPARTMENT OF DEFENCE
¢

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Published by

DSTO Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Victoria 3001

Telephone: (03) 9626 8111

Fax: (03) 9626 8999

© Commonwealth of Australia 1996
AR No. 009-692

March 1996

APPROVED FOR PUBLIC RELEASE

Low Cost INS-GPS Integration for Navigation
(INS Software Implementation)

Executive Summary

Inertial Navigation Systems (INS) and Global Positioning Systems (GPS) both can be
used for a wide range of navigation functions. Each has its strengths and weaknesses
in this respect.

The major strengths of GPS are that it can provide regular estimates of position that
will remain within certain error bounds and that its hardware costs are relatively
cheap. Its weaknesses are: the size of the errors from GPS receivers (not requiring
approval from the US Department of Defense) are relatively large (around 100 m); the
update rate for navigation solutions are relatively slow (1 to 10 Hz); and the receiver
output is unreliable due to received signal dropping out or being jammed.

For INS its strengths are: a high navigation solution rate; low errors over a short
period of time; and reliability as it is self contained. The major weakness is that errors
grow with time and the rate of growth is inversely related to the cost of the INS.

Combined INS-GPS systems are capable of making up for the weaknesses inherent in
each. For example self guided missiles need a high degree of accuracy in the end game
scenario which may be achieved with high cost INS guidance alone but with the
incorporation of GPS much cheaper INS units could be used for the same result.

This document describes a software implementation of an INS algorithm that will
allow easy integration of GPS data into the navigation solution taking into account
issues such as different data rates from the inertial sensors and GPS receivers. This
software will be useful for research into optimisation algorithms for INS-GPS
integration.

Contents

1. INTRODUCTION.....ccouee 1
2. BACKGROUND.....cccieemeassssssisissssismsssssssssssssesassssessassasssssessnssesssnsasassssassnsassssnssasassssnsansonsses 1
3. AIMS.....ccceueunue w1
4. CONSIDERATIONS FOR COMBINING INS-GPS DATA 2
4.1 INS .2
B2 GPSeeerevrrererseessssessarssssssssassmssosssssisssssotsssssssssonssessassessasssssssssssssssessassssssssesssassesassnssssassnsssans 2
4.3 Combining INS and GPS 2
5. INS INTEGRATING ALGORITHM......consnmnnsnsissnsnsnsscsssssacsessssesassesasassessasesssses 3
5.1 Algorithm Strategy w3
5.2 Attitude Representation......eciscsssesssisinninsiesnsnseissnensaacas 3
5.3 LINEAL M OtiON.uucerirecreraerreresanssesessesessisassnssisnssesssnsanansssssessassensonssnsssstsnssnssessossasssssssssosssnsssssscss 5
6. SOFTWARE DETAILS e sanees 6
6.1 IMU SAMPLING ..ovvurerirerrirserersnresssssssmssssssnssssisssssssssssssssssssssssssssssassissssssssssssssssssssssssssasssssssssss 6
6.2 Program Descriptionscccccmecsescisicsenscnsnscssssasescnsusscssnens 6
6.3 Main Program Structure .9
6.3.1 Common Assumptions SR 9
6.3.2 Versions I G_F1.CPP,I_ G_F2_A,andI_ G_F2_ T . 9
10.3.3 Version I G_F3.CPP ... iiicnninnsnrisscseessntssssseneesssssessssnesssssssssssssasssssssasasssssssssane 12
6.3.4 Version I_G_R1.CPP and I_G_R2.CPP s 12
6.4 Unresolved Problems reosessssassntsasssaresssssne 16
6.5 Planned Modifications rersearesessnessisasssansanes 17
7. REFERENCES.......ccoerereneesnsssessasssassesessssesssssaessssssssissssssssessassnsssssssssssassssssssse 17
APPENDIX 1 QUATERNION DEFINITION AND PROPERTIES..........cccoovvereereennns 19
APPENDIX 2 3RD ORDER TAYLOR SERIES AND 4TH ORDER
RUNGE-KUTTA SOLUTIONS ... cessessserstansrsensosssnsnns 21
APPENDIX 3 TERMINOLOGY cucccreererereenensassisissssonissssssssessssesesessenssessssessesssssstssssssssssssessoss 23

DSTO-GD-0081

1. Introduction

Guidance and Control Group of Weapons Systems Division has a task GPS-Guided
Weapons Applications (ADA93/276) in which research is being undertaken to develop
navigation techniques for self guided unmanned vehicles based on low-cost Inertial
Navigation System (INS) and Global Positioning System (GPS) technologies.

2. Background

Strapdown INS technologies are based on the principle of integrating specific forces
and rates measured by accelerometers and rate gyros of an Inertial Measurement Unit
(IMU) fixed to the navigating body. Given the initial conditions of position, velocity
and attitude, accurate real time integration of IMU output will produce position and
attitude information in some given navigation coordinate system. GPS on the other
hand relies on the technique of comparing signals from orbiting satellites to calculate
position (and possibly attitude) at regular time intervals, but being dependent on the
satellites signals makes GPS less reliable than the self contained INS due to the
possibility of drop-outs or jamming.

The errors inherent with INS, ie turn-on bias, dynamic biases and integration, are
relatively small over update periods, however they accumulate with time. Errors with
GPS are bounded with time, however they are large relative to those of INS over an
update period.

The two technologies are complimentary so that combining them provides an
opportunity to overcome their respective weaknesses. Combined INS-GPS systems
usually rely on high accuracy IMU's (hence expensive) while using less than optimal
algorithms to combine the data. By using improved algorithms it is believed that less
accurate, but relatively inexpensive IMU's could be used in combined INS-GPS
systems.

3. Aims

In support of the development of algorithms to combine INS and GPS data this
document describes the software implementation of an INS algorithm the structure of
which will allow the incorporation of GPS data, and that of other sources, such as
magnetometers, altimeters etc.

DSTO-GD-0081

4. Considerations for Combining INS-GPS Data

The following discusses some of the specific issues peculiar to INS and GPS systems
that will have a bearing on how a combined INS-GPS system may be implemented.

4.1 INS

In integrating IMU data to obtain a navigation solution, the sampling period in an
integration step is important to consider. For a strapdown IMU, body specific forces
and rates are likely to have some relatively high frequency components hence a high
sampling and integration rate is needed to deal with these. On the other hand
accounting for the motion of the navigation reference frame (usually Earth based
reference) with respect to inertial space (in which an IMU operates), need only be
performed at a much slower frequency since the motion of the Earth’s surface in space
is both smooth and slow (in rotation). Other considerations for IMU integration such
as the value for gravity as a function of altitude and latitude need only be sampled at

slower frequencies.

Computational time becomes an issue given that it is desirable to perform at least some
of the integration process at a high rate, hence there is a need to minimise the
computational over-head. An approximate solution to the equations of motion that
cuts computational time is a compromise between these conflicting requirements.

4.2 GPS

GPS receivers can operate on at least one of two coded messages transmitted by the
satellites. One of the messages is encrypted and is only accessible with the approval of
the US Dept. of Defense. The other is open to public use however the information it
contains has been deliberately corrupted so that the ultimate accuracy of receivers
using it alone are an order of magnitude worse than those using the encrypted
message, the latter being capable of less than 10 meters accuracy.

It is possible to counter the intentionally added errors using differential techniques
where a second receiver at a known location transmits error information to the first
that is common to both receivers. This is not practical for the intended purposes of the
navigation system being studied so need not be considered further here.

Most GPS receivers will generate navigation solutions at a rate of 1 Hz, however some
receivers will produce at least a partial solution at rates up to 10 Hz.

4.3 Combining INS and GPS

Whatever technique is chosen to fuse the data from the IMU and GPS units the major
consideration arising from the previous sections is that of the rates at which data
becomes available. With a GPS unit issuing data at a slower rate than an IMU unit the
algorithm must be able to integrate the IMU data at the required higher rate and then
periodically be able to fuse the resulting data with GPS data. This requirement means
other data sources also should be easily accommodated with respect to their data rates.

DSTO-GD-0081

5. INS Integrating Algorithm

With the above in mind the algorithm chosen for the integration of IMU data is that
defined by Miller (ref 1). The following sections describe in some detail Miller's
algorithm.

5.1 Algorithm Strategy

Miller's algorithm breaks the various processes up according to relative required rates
of calculation. This provides a natural means of incorporating GPS data at an
appropriate rate.

Three rates are used:

Fast Rate:At the fastest rate raw IMU data is adjusted to account for inherent
biases then integrated to give a representation of attitude and velocity and in the
inertial frame. The velocity represents only that accumulated from forces since the
last iteration of calculations at the intermediate rate.

Intermediate Rate:At the intermediate rate inertial frame attitude is adjusted to
allow for Earth rotation. The velocity increment since the last intermediate
calculations due to inertial forces is then converted to the navigation frame. The
total velocity increment in the navigation frame needs to take into account velocity
changes due to gravity and corriolis effects. The velocity increment due to these
effects is calculated at this rate and added to the inertial velocity increment to give
the total velocity increment since the last intermediate calculations. Total velocity
is then updated and intergrated to give the change in postion in the navigation
frame over the last intermediate period.

Slow Rate:At the slow rate latitude, longitude, gravity, and Earth radius are
updated.

The form of data available at the intermediate rate from the INS algoritm is compatible
with that from the GPS. This means that it would be appropriate to perform any INS
and GPS data fusion algorithm at a rate no greater than the intermediate rate.

5.2 Attitude Representation

Miller utilises quaternions as the method for representing attitude of the IMU. The
following gives a basic description of the particular form of quaternions used by
Miller. Appendix 1 provides some further detail on their definition and properties.

A quaternion uses four parameters to describe the rotation from one set of axes to
another. In essence it consists of a three element vector that is common to both axes
and a scalar value that defines the rotation about that vector.

The governing differential equation for rotation in terms of quaternions defined in
Appendix 1is

0 =10(* 0@

DSTO-GD-0081

where Q is the quaternion and ® is angular velocity (which can be represented as a
quaternion with a zero scalar term), and * is the quaternion multiplication operator
(see Appendix. 1).

For a system where discrete sampling is carried out a means of calculating Q(t+81) is
required. Miller describes several methods to obtain a solution for this including 3rd
order Taylor Series and 4th order Runge-Kutta (see Appendix 2). Miller also describes
the following solution.

O(t+8)=0(t)*0
where 0 is a rotation quaternion defined as
8=C,0S with C=cos(10,), S = (1/6,)sin(10,),and 6, =0-6.

The “rotation vector” 0 represents the incremental rotation of IMU relative to the
inertial frame during the update period 8. To obtain 6 Miller assumes that during the
update period the outputs from the gyros can be described by a second order
polynomial which requires two samples during the period. The following is the
numerical solution for 6 in which the very small triple vector product is neglected.

0=5,+6,+%(8,x35,)

where 8, and 8, are the incremental gyro samples taken at the mid-point and end-
point of the update period respectively.

In order to keep processing time down when calculating the rotation quaternion)
approximations are made for C and S. Miller proposes the use of either a 3rd order
series expansion for sine and cosine, or a modified 2nd order expansion, claiming
comparable performance. The 3rd order expansion has C=1-30-0, and
S=1-10.0, while for the modified 2nd order expansion C=1-1;0-0 and §=0.5.

When iterated at the fast rate the above method for calculating Q (¢ +8¢) provides a
representation for the attitude of the IMU over time in the inertial frame. Conversion
of O to be relative to an Earth based frame is carried out at the intermediate rate. The
numerical equation to do this is

0«9'*0
where 97" = C,—(w ;;1,)S is the conjugate of the rotation quaternion ¢ for the rotation
of the Earth base frame with respect to inertial space over the period of the
intermediate rate #,, and ® ;;f, equals the “rotation vector” for the same. Note that the
Earth base frame is usually defined on the surface of the Earth. Therefore ® ;; will be a

function of latitude and thus needs to be updated periodically as the IMU moves
across the Earth's surface. Miller does this at the intermediate rate.

Periodically it is necessary to correct scale errors (see Appendix 1) that accumulate in
the quaternion. This is done at the intermediate rate by normalising the quaternion. In
order once again to keep the computational time down Miller uses the following to

normalise Q.

DSTO-GD-0081

QL=15- o.si o
0« QLQ

5.3 Linear Motion

Like attitude, linear motion can be split into motion caused by body external forces
and those caused by gravitational effects, Earth rotation and curvature.

The velocity of the body, rotating with respect to an inertial frame, caused by external
forces, is given by the equation

V]F =F- QIBVIF

where Q; is the skew symmetric matrix for body rotation relative to the inertial frame
and F is the sum of the external forces. In obtaining a solution to this equation for the
fast rate calculations, Miller claims that it is a satisfactory compromise between
computational load and accuracy to assume angular velocity and external forces are
constant over the calculation period. The resulting numerical solution is

VeV +A-0x(V+1A)

where A = Ith is the accelerometer output, and 6 is the “rotation vector”. With V,,.
set to zero at the start of an intermediate period, iteration at the fast rate gives the
incremental change in velocity over the intermediate period.

For the velocity of body relative to the Earth, caused by gravitation and axes rotation
over the intermediate period, the equation is

VEG =8— (29 +Qpy) Vg,

where g is the gravity vector and Q,; and €, are the skew symmetric matrices for,

respectively, the rotation of the Earth relative to the inertial frame, and the rotation of
the navigation frame relative to the Earth frame. In this implementation the Earth and
navigation frames are the same. The numerical solution to this is

Vig =86 —(2Q +Qp XV + 581,

where V; <V, +(V,; + V) is the total velocity relative to the Earth calculated using
Vi from the previous intermediate calculations.

Position is updated using X «X+ Ve + 3 (Ve + Ve)iz,

DSTO-GD-0081

6. Software Details

The author has made several implementations of the algorithms discussed in chapter
5. These can be divided into two main groups, those that accept real time IMU data
and those that take IMU data that has been previously stored. They have all been
written in C++. '

The following sections detail the various implementations. Text written in italics is
explained further in Appendix 3.

6.1 IMU Sampling

The IMU (in this case a GIC100) provides accelerometer and gyro output at a rate of
600 Hz. The fast rate calculation period requires gyro samples at the mid point and end
of the period and accelerometer samples at the end of the period. This means that the
highest possible rate of calculations with the GIC100 is 300 Hz. In general 2n
(n=1,2,3...) IMU Blocks are needed for the Fast Data Block. For example, on a 33 MHz
386 PC it was found that a minimum of 4 IMU Blocks were needed for fast rate
calculations in order to avoid computational overload, giving a maximum update rate
of 150 Hz. With the greater comiputational over-heads of incorporating GPS data more
IMU Blocks per fast rate calculations may be needed or a faster processor used.

6.2 Program Descriptions

1_G_#?22.CPP is the filename format for the main programs. # is either R for the
program using real time input data, or F for input data read from a file. ??? refers to the
particular version.

The following lists the source file names for the various implementations together with
a brief description of the file’s purpose. Support source files are also listed.

I_G_F1.CPP

This version only processes IMU data stored in a file. It features the following:
e Code that handles IMU data blocks that may or may not include a time stamp.

e Determination of the IMU biases, ie on the accelerometers and gyros before
processing begins and again at regular periods during processing. Biases are
calculated by simple averaging of IMU data over a period of time. This is
implemented by the user supplying two parameters at run time. One for the
period over which averaging takes place, and the other for the period at the end of
which biases are updated. The following shows how this occurs during
processing.

DSTO-GD-0081

start
processing

where u = the update period and c = the bias calculation period, both being
user defined at run-time.

Note that with averaging it is essential the IMU is stationary during the bias
calculation period. For this reason in dynamic tests recalculation is not
practical. In these circumstances u is set to a value greater than the duration of
the test.

In section 3 it was stated that the fast rate calculations require gyro samples to be taken
at the middle and end of a Fast Data Block, and accelerometer samples at the end. A
variation of this is implemented where for the gyros samples within the each half of
the Fast Data Block are averaged and the accelerometer samples averaged over the
entire block before being used in calculations. Assuming actual changes in rates and
accelerations during a Fast Data Block are less than IMU noise then the signal to noise
ratio will be improved. The impact of this becomes greater as the number of IMU
blocks per Fast Data Block increases.

I_G_F2_A.CPP

This version processes both GPS and IMU data. All the features of version I G_F1.CPP
are contained in this version along with the following:

e The GPS data used is taken from a file containing output data from an Auspace
Multinav receiver.

* The method of incorporating the GPS data is to simply update periodically the
estimated position, velocity and attitude information being generated by the
integration of IMU data. This is achieved by averaging GPS data for a period prior
to the moment when updating occurs. INS position and velocity estimates are
reset to those of the GPS average and the quaternion to represent a level
orientation while maintaining INS estimated heading. It should be noted that by
using an averaging technique for the GPS data that operation is limited to the
static applications unless the averaging period is set to one second, in which case
only one GPS sample is taken, thus allowing dynamic applications.

¢ It is possible to set an averaging period of the GPS data that is greater than the
update period.

I1_G_F2_T.CPP

This version is the same as I_G_F2_A.CPP with the only exception being the GPS data
was taken from a Trimble receiver hence the GPS input data is in a different format.

DSTO-GD-0081

I_G_F3.CPP.

This version is designed to test the algorithm’s performance without the effects of
inaccuracies in the input data from the IMU. Consequently simulated IMU data for
known motion, eg coning, can be generated and stored in a file for use in this version.
The following describe its differences from the version above.

e The IMU input data file has a different format of IMU data, using floating point
numbers.

e No bias calculations are performed.

e No GPS data is used.

I_G_R1.CPP

This version processes real time data supplied from the GIC100 IMU only. It is a basic
version with few added features. The following details its main features:

¢ IMU data is captured through the PC's DMA operation via a purpose built
interface.

e Accelerometer and gyro biases are calculated by averaging data over a set period
while the IMU is stationary and comparing them against accelerometer and gyro
values calculated for the IMU's location and orientation. During this process the
DMA handles one IMU Block of data at a time.

e For the integration process the fast rate calculations are performed only after there
has been accumulated in a buffer via the DMA all the IMU data generated during
an intermediate rate calculation period. When the buffer is full the DMA initiates an
interrupt which in turn flags the commencement of fast rate calculations.

I G_R2.CPP

This version differs from I_G_R1.CPP in one important way which is explained below

e AsinI G_RI1.CPP two buffers are used in the integrating process, however their
size is such that they can only store the data of one Fast Data Block each. When an
interrupt is initiated after a buffer is full the fast rate calculations are carried out
immediately while the other buffer is being filled. When enough fast rate
calculations have been done an intermediate rate calculation is performed.

A drawback with this version is that with the smaller buffers than in the I G R1
version there is less time in which to perform extra calculations. Thus when GPS is
introduced into the algorithm this method is more likely to require longer IMU
sampling periods. On the other hand the advantage of this version is that the delay
between the time the intermediate calculations are completed and the time for which
they are valid will be less.

IMU.CPP

This file contains function definitions that are specific for the operation of the GIC100
IMU. The functions are only required by the real time main programs I_G_R???.CPP.
The function declarations are made in the IMU.H file.

DSTO-GD-0081

DMA.CPP

This file contains a set of functions to facilitate the operation of the PC's DMA. Some of
these functions are required only by the real time main programs I G_R???.CPP. The
function declarations are made in the DMA.H file.

INTRPT.CPP

This file contains a set of functions to facilitate the operation of the PC's Interrupt
ports. Some of these functions are required only by the real time main programs
I_G_R???.CPP. The function declarations are made in the INTRPT.H file.

6.3 Main Program Structure

The following sections describe the structures of the various main program versions

listed above.

6.3.1 Common Assumptions

~ For all the main programs versions listed above there are some common assumptions
made, which are:

e The initial orientation of the IMU must be such that the Z-axis is pointing down.
e The IMU data is assumed to have been generated at 600 Hz.

6.3.2 Versions I_G_F1.CPP,I_ G_F2 A,andl. G F2 T

Figure 1 shows a block diagram that describes the structure of the main program of
versions I_G_F1.CPP, I_G_F2_A.CPP and I G_F2_T.CPP. The latter two differ from
I_G_F1.CPP primarily by the code represented inside the dotted box after the function
Output_Location(), in which GPS data is incorporated. Also for the latter two versions
additional code has been made to the Initialise() function that opens the GPS input
data file and reads from it into an array relevant data for the first GPS data averaging
period.

DSTO-GD-0081

START This function performs the following:

/ Open all input and output files;
Allocate memory for buffers;
Read over header info. in IMU input data file;
. . Obtain from user Bias Update and Calulation
This function calculates the average error | i Periods, and IMU location and orientation;

. . ! »y
over the Bias Calculation Period. Calc_Bias() Calculate initial rotation vector and quaternion.

Initialise() 4

This function does the following:

Read data from the IMU input data file to fill
one Fast Loop Block;

If this data is in the bias recalculation period
then the data is stored. If it is time to
update the biases then this stored data is
used to recalculate the biases;

Performs the integration algorithm for the
quaternion, and incremental change in
velocity since the last call to
Intermediate_Loop();

Increment fast loop counter CF.

o
Fast_Loop()

This function does the following:

Update the quaternion to allow for earth _ |
rotation;

Normalise quaternion to correct scale error;

Update the velocity relative to the earth
since the start, and the change in position
since the last Slow_Loop() call;

Increment intermediate loop counter CI.

| This function updates the following:
L—| Latitude and longitude;

L g
Slow_Loop() Altitude;
This function outputs to the screen and i Earth constants;
the output data file various parameters. ~~——___ [Earth rotation vector.

Output_Location()

if

Code represented inside the dotted /
time to update

block exists only in versions
1. G_F2_A.CPPand_G F2_T.CPP.

F : This function:

! 1~ Readsrelevant GPS data from file
/ to an array until current time;
Averages data from above array;
Resets INS position and velocity

and quaternion estimates using
above averages;
______________) Returns 1 if latest GPS data was

q " corrupt, O otherwise.

T< while
key hit
Note: Block labels that end with il |

indicate function names in

the program; This f . . N
sar 18 1S Iun (7

FL_PER_IL equals the number of fast Delnitialise() l_— s function C ans l.lp elore the

loops required per intermediate loop; o the program is terminated.

IL_PER_SL equals the number of
intermediate loops required per slow loop.

Figure 1. Flow diagram for _G_F1.CPP,I_G_F2_A.CPP,1.G F2_T. CPP.

In all three versions three files are opened:

IMU_IN.DAT

This is the binary input file containing data taken from a GIC100 IMU. These files are
generated using a program called GIC100.EXE written by Greg Thamm. The file

10

DSTO-GD-0081

consists of a series of data blocks each containing accelerometer and gyro values and
an optional extra time stamp (see Appendix 3 under IMU Block). When the time stamp
is included there is also some header information at the start of the file. The time
information is never used, but the different format of files with or without time stamps
has to be dealt with. This is done by defining TIME_DATA_FLAG as 1 in the include
file I_G_FILE.H when the time stamp is used.

IMU_OUT.DAT

This is a binary output file that stores the accelerometer and gyro values (before
conversion from GIC100 units) actually used in the fast rate calculations. Nine integer
values are stored for each fast rate calculation. In order they are x, y, z accelerometer
values, gyro values at mid-point of sample, and gyro values at end-point of sample.

INSGPS.DAT

This text output file stores various values during the execution of the
Output_Location() function, that have been generated by the program. Eleven floating
point numbers are written to file and in order are: Time (s) since the start of data
processing (referenced to the input data, not real time); Displacement (m) from initial
position in north, east, and altitude directions; Current velocity (m/s) relative to the
Earth in north, east, and down directions; Quaternion scalar value Q, and vector

values Q;, Q,, and Q.

For versions I_G_F2.A.CPP and I G_F2_T.CPP an additional input file is opened for
reading GPS data named GPS_IN.DAT. The Trimble and Auspace GPS receivers that
generate the data stored in the file use completely different formats and provide more
information than is required by these programs. In Appendix 3 the relevant data block
formats are given under Auspace Data and Trimble data. In the Trimble data there is no
velocity value for the vertical direction. This means that for version I_G_F2_T.CPP the
vertical velocity estimate does not get altered when GPS updating takes place and thus
remains solely the product of IMU integration.

The following user input requirements are the same for all three versions.

¢ Bias update period. -

e Bias calculation period.

¢ Initial latitude, longitude, and altitude.

e Initial heading

For the versions including GPS data the period when GPS data is used to update the
position, velocity and quaternion must also be supplied by the user.

11

DSTO-GD-0081

12

6.3.3 Version I_G_F3.CPP

Figure 2 shows the general structure of version I_G_F3.CPP. Comparing to figure 1 it can be
seen that structurally it differs from version I_G_F1.CPP by only the removal of the
function that calculates the IMU biases.

Additional differences not shown in the figures are as follows.

e As pointed out in section 6.2 this version uses floating point numbers in the IMU
input data file (which is named TEST_IN.DAT). The format of this data is shown
in Appendix 3 under IMU Test Block.

e An additional input data file named I_G_INIT.DAT is used to read in some of the
data that the user would otherwise be required to enter on execution. The file is a
text file and the data stored in it, in order, is the initial latitude, longitude, altitude,
and the heading. This data is placed all on one line and separated by "#" symbols.
For all bar altitude there are two values separated by a space for degrees and
minutes with the latter being a decimal number if necessary. For example:

o -3442.6034# 138 38.435# 25# 0 0#

e With no biasing or GPS data, and I_G_INIT.DAT being used, this version does not
require any data to be entered by the user during execution.

6.3.4 Version I_G_R1.CPP and I_G_R2.CPP

Figure 3 shows the structure of main section and its interrupt functions of I_G_R1.CPP,
while the same for version I G_R2.CPP is shown in figure 4. Some functions relating to
the interrupt and DMA for the IMU have not been described specifically. These
functions are defined in IMU.CPP, DMA.CPP, and INTRPT.CPP where further details

of their operation are given.

For both versions there are many common aspects. These are dealt with first and the
unique aspects are described directly after the applicable figures.

There are two output files generated. These are called IMU_OUT.DAT and
INSGPS.DAT and are identical to the output files of the same name described in
section 6.3.2.

The only user input required during execution is the initial location of the IMU, ie
latitude longitude and altitude, and the heading.

The IMU interface is connected to DMA channel 7 and Interrupt channel 10. The basic
operational relationship between the IMU interface, DMA, and Interrupt is as follows.

DSTO-GD-0081

This function performs the following:
Open all input and output files;

Read from file intitial IMU position aN
e

orientation;
Allocate memory for buffers;
Read over header info. in IMU input data file;
Obtain from user Bias Update and Calulation
Periods;
Calculate initial rotation vector and
quaternion.

This function does the following:

Update the quaternion to allow for earth
rotation;

Normalise quaternion to correct scale error;

Update the velocity relative to the earth
since the start, and the change in position
since the last Slow_Loop() call;

Increment intermediate loop counter CI.

~

This function outputs to the screen and
the output data file various parameters. ™~

START

Initialise()

—

Fast_Loop()

——

Note: Block labels that end with ()
indicate function names in
the program;
FL_PER_IL equals the number of fast
loops required per intermediate loop;

IL_PER_SL equals the number of
intermediate loops required per slow loop.

L
Slow_Loop()

Output_Location()

re

T

while

no key hit

Delnitialise()
—

q____

This function does the following:

Read data from the IMU input data file to fill
one Fast Loop Block;

If this data is in the bias recalculation period
then the data is stored. If it is time to
update the biases then this stored data is
used to recalculate the biases;

Performs the integration algorithm for the
quaternion, and incremental change in
velocity since the last call to
Intermediate_Loop(};

Increment fast loop counter CF.

| . This function updates the following:
Latitude and longitude;

Altitude;

Earth constants;

Earth rotation vector.

This function cleans up before the

L the program is terminated.

Figure 2. Flow diagram for I_G_F3.CPP

13

DSTO-GD-0081

14

This function performs the following:
Setup interrupt vector to Bias_Intrpt();
Holds in a loop until Bias_Intrpt() has
been called the required number of times;
Prevent further IMU data transfers;
Calculate biases.

Bias_Intrpt()

Store IMU Block data
from DMA buffer

Clear the interrupt

END Interrupt

Holding loop

This function does the following:

Update the quaternion to allow for earth ~———

rotation;
Normalise quaternion to correct scale error;
Update the velocity relative to the earth
since the start, and the change in position
since the last Slow_Loop() call;
Increment intermediate loop counter CIL.

This function outputs to the screen and
the output data file various parameters. ~—~_]

Note: Block labels that end with ()

e

\‘

START

Initialise() e

T

Setup DMA to write to
IMU Block buffer

-
Display_IMUQ

T

while

user not continue I

Calc_Bias()

I
Set interupt vector

for IMU_Intrpt()
I

Setup DMA to write to
Intrm. Data Block buffer

—]

1T

indicate function names in
the program;

FL_PER_IL equals the number of fast
loops required per intermediate loop;

IL_PER_SL equals the number of
intermediate loops required per slow loop;

buffer_filled equals 1 when an buffer
has been filled.

P

while
not buffer_filled

[\
Fast_Loop()

e
Intermediate_Loop()

This function performs the following:

_~ Open all input and output files;

Setup interrupt mode;

Save old interrupt vectors;

Allocate memory for buffers;

Setup DMA transfer mode;

Obtain from user IMU location and orientation;
Calculate initial rotation vector and quaternion.

This function reads from the IMU Block buffer
the accelerometer and gyro values and diplays
them on the screen.

IMU_Intrpt()

Reset DMA to write
to other
Intrm. Data Block buffer

buffer_filled =1

Clear the interrupt

END Interrupt

\ This function does the following for

F_L_PER_IL times:

Read IMU data from Intrm. Data Block buffer
for one Fast Data Block;

Perform the integration algorithm for the
quaternion, and incremental change in
velocity since the last call to
Intermediate_Loop();

Slow_Loop()

Il

e
Output_Location()

T while

N\ no key hit

Delnitialise()

END

Q___

This function updates the following:
Latitude and longitude;
Altitude;
Earth constants;
Earth rotation vector.

Before program is terminated this function:

.// Restores old interrupt vectors;

Restorse old interrupt mode;
Closes open files.

Figure 3. Flow diagram for version I_G_R1.CPP.

DSTO-GD-0081

This function performs the following:
START ~ Openall input and output files;
/ Setup interrupt mode;
Initialise() Save old interrupt vectors;
. Allocate memory for buffers;
Setup DMA to write o Setup DMA transfer mode;

Obtain from user IMU location and orientation;

IMU Block buffer Calculate initial rotation vector and quaternion.
This function performs the following: S1_ This function reads from the IMU Block buffer
Setup interrupt vector to Bias_Intrpt(); . .
] e Display_IMU(Q) the accelerometer and gyro values and diplays
Holds in a loop until Bias_Intrpt() has
. . them on the screen.
been called the required number of times; T .
Prevent further IMU data transfers; while

. user not continue
Calculate biases. , \ l IMU_Intrpt()

e
Bias_Intrpt() Calc_Bias() Reset DMA to write
— to other
Store IMU Block data o imm'lpt m— ast Data Block buffer
from DM;:\ buffer for IMU_Intrpt() | o Ib — |
1
| Advance counter | . T
Setup DMA to write to
1 Fast Data Block buffer FAST LOOP
Clear the interrupt CALCULATIONS
o S
Clear the interrupt
Holding loop

Operations carried out here are:
Read IMU data from Fast Data Block buffer;
Perform the integration algorithm for the
quaternion, and incremental change in
velocity since the last call to
Intermediate_Loop();

This function does the following: | e

Update the quaternion to allow for earth™ | | Intermediate Loop()
rotation;

Normalise quaternion to correct scale error;

Update the velocity relative to the earth

since the start, and the change in position

since the last Slow_Loop() call;

Increment intermediate loop counter CI.

Slow_Loop() This function updates the following:
—-00p Latitude and longitude;
This function outputs to the screenand ~—~—__ I Altitude;
the output data file various parameters. e . Earth constants;
Output_Location .
tput._ 0 Earth rotation vector.
T .
Note: Block labels that end with () while
indicate function names in no key hit
the program;
FL_PER_IL 1s th ber of fast
loops req_l.lireilq::rsint:nll‘-llg;iaz ?oo;; Delnitialise() ®1———_ Before program is terminated this function:
IL_PER_SL equals the number of Restores old Entcrmpt vectors;
intermediate loops required per slow loop; Restorse old interrupt mode;

Closes open files.

Figure 4. Flow diagram for version I_G_R2.CPP.

‘DMA channel 7 is set up to write transfer, autoinitialise, and single transfer modes
while the Interrupt controller is set to Special Fully Nested Mode (for more details
refer to Section 3 and 5 of reference 2). This is achieved through the function calls
Set_ DMA_Mode() and Initialise_IC() respectively. Before transfers take place DMA

15

DSTO-GD-0081

16

channel 7 is given an address of a buffer to transfer to and the number of words to
transfer through the function call Load_IMU_DMA(), and Interrupt channel 10 has its
vector set to an interrupt function through a call to Set_Interrupt_Vector(). With this
done transfers can now take place. When the interface has IMU data ready to send it
notifies the DMA to commence transfer. Once the DMA has counted the required
number of transfers it reinitialises itself and notifies the IMU interface. The Interface
responds by requesting an interrupt so that the interrupt function can then operate on
the data stored in the buffer. The process then is repeated.

There are two different sized buffers, one is for the calculation of biases while the other
is for the actual integration process. Likewise there are two separate interrupt

functions.

For the bias calculations the buffers size is such that it will take one IMU Block of data.
The name of the interrupt function is Bias_Intrpt(). The duration in seconds over which
biases are calculated, and hence the number of times Bias Intrpt() is called, is
determined by BIAS_TIME which is defined in I_G_REAL.H.

For the integration process in version I_G_F1.CPP two separate buffers are allocated,
each capable of storing an Intermediate Data Block. The program sets up the DMA to
alternate between the buffers as each is filled. When a buffer is full IMU_Intrpt() is
requested to swap DMA buffers. On return from IMU_Intrpt() the program drops out
of a holding loop to commence integration calculations. First the fast rate calculations -
are repeated until all the data in the most recently filled buffer has been used. Next one
set of intermediate rate calculations are performed and finally if sufficient intermediate
rate calculations have already occurred, a slow rate calculation is performed. When
these have all been completed the program returns to the holding loop to await the
next IMU_Intrpt() request. While processing is taking place on the data in one buffer,
the other is being filled. Data will be lost if IMU_Intrpt() is requested before the
completion of all the fast rate calculations on the data in the previously filled buffer.

For the integration process in version I_G_R2.CPP two separate buffers are allocated,
each capable of storing a Fast Data Block. The program sets up the DMA to alternate
between the buffer as each is filled. When a buffer is full IMU_Intrpt() is requested.
This function swaps the DMA buffers and then performs one set of fast rate
calculations. When IMU_Intrpt() has finished the program returns to a holding loop.
After the required number of iterations of IMU_Intrpt() have occurred the program
falls out of the holding loop to do the intermediate rate calculations and if sufficient
intermediate rate calculations have already occurred, the slow rate calculations are
performed. The program must complete all this and return to the holding loop before
the next IMU_Intrpt() is requested otherwise data will be lost.

6.4 Unresolved Problems

In the real time versions a problem was encountered in which occasionally the
program would lock up the computer. It appeared that critical memory was being
overwritten, probably by the DMA. Investigation found that there are delays of
random frequency and duration during processing and when the delays are long
enough the calculations are not complete on a particular buffer's data when an

DSTO-GD-0081

interrupt request to change buffers occurs. The problem can be avoided by increasing
the number of IMU Blocks per set of fast rate calculations and/or the number of fast
rate calculation sets per intermediate rate calculation set. In effect this provides more
processing time for the calculations thus accommodating the delays as part of the
processing time. This is not an entirely desirable solution since the slower processing
rate is counter productive. Investigations continue.

6.5 Planned Modifications

The following functional additions and or changes are planned, which will result in
new main program versions that either source their data in real time or from file.

¢ A new calibration routine for initialising the IMU that will use Kalman Filtering
techniques. -

e Inclusion of integrity checks that will monitor the following for unexpected
results:

1. The sensor data;

2. The global solution ;

3. Algorithms for the fusion of data, ie Kalman Filters.

Bad results in any of the above will lead to the rejection of the contributing data.

7. References

1. R.B. Miller, "Strapdown inertial navigation systems: An algorithm for attitude and
navigation computations", ARL-SYS-REPORT-23, October 1980.

2. Intel 82350 EISA Chip Set Manual, August 1990.

17

DSTO-GD-0081

Appendix 1
Quaternion Definition and Properties

A quaternion uses four parameters to define the rotation of one 3 dimensional
coordinate system relative to another. Miller defines it as:

0=C,88
where: C=cos(16,); S=(1/,)sin(30,); 0=(6,,0,,6,) is the “rotation vector”
(assuming 0,,0,,0, are small); and 0, =(6,” +6,” +932)’L.

The physical interpretation of this is that of a rotation through an angle 0, measured
from reference to body axes, about a unit vector defined (in both axes systems) by

0/6,.
Normalisation of Quaternions

With the quaternion defined as above the sum of the squares of the four parameters is
unity. The square root of this is often called the "length" of the quaternion.

Should the length change from unity then a "scale error" has taken place. This can be
corrected by "normalisation", ie by dividing the quaternion by its length.

Quaternion "Multiplication"
Given the quaternions 4 = 4;,A and B = B,, B, then their product C = C,,C is
C=A*B=(4,B,—A-B),{4,B+AB, +(A xB)}.

To physically interpret this consider a body where A represents the rotation from
reference to body axes. If the body is rotated relative to the reference frame so that B

‘represents the rotation from the old to new body axes, then the quaternion C
represents the rotation from the reference to the new body axes.

Refer to Appendix 2 of Miller for further details.

19

Appendix 2

DSTO-GD-0081

3rd Order Taylor Series and 4th Order Runge-Kutta

The following are alternative solutions to Q_ () =10()*o () to find Q(t +h).

Solutions

3rd Order Taylor Series:

O@t+h)=00+U(®)

where: U = U,,U is a quaternion defined by;
Uy =1-(8-9);
U=45+1(5,+8,)~%(5-8)5;
h = the sample period;
8, is the integrated gyro sample from t to (¢ + 3 /);

3, is the integrated gyro sample from (¢ + 3 A) to (t+h);

8=9,+9,;

4th Order Runge-Kutta:

With 8, and 8, defined as above let

Ho, = (35, -8,) and Ho, = (8, +3,) and Ho, = (35, -3,)

then

and finally

k =+0(0)*Ho,
h)=0@)+41k,
L =30, + 1 h*Ho,
O,(t+4h) =00 ++k
k, =10,(t+5hy*Ho,
O,(t+h) =0 +k,
ky =4 0,(t+hyHo,

QO

| (F+

o=

&

O@t+h)=0@)++(k, +2(k +k)+k)

21

DSTO-GD-0081

Appendix 3
Terminology

fast rate calculations: Where integration of IMU data is performed in body
axes. Performed at highest frequency (100-300 Hz).

intermediate rate calculations: Corrects quaternion for Earth rotation, converts to
Navigation coordinates and integrates to location.
Frequency is 1-10 Hz.

slow rate calculations: Updates Earth constants. Frequency s 0.1-1 Hz.

FL_PER_IL: integer. Number of times fast rate calculations are
performed before intermediate rate calculations are
initiated.

IL_PER_SL: integer. Number of times intermediate rate calculations

are performed before slow rate calculations are initiated.

CF: A counter used to count the number of times fast rate
calculations have been performed since intermediate
rate calculations were performed last.

CL A counter used to count the number of times
intermediate rate calculations have been performed
since slow rate calculations were performed last.

IMU Block: A single block of data from the IMU, 24 bytes long
(optional 32). Contains gyro and accelerometer info for 3
axes plus an optional time stamp. The IMU Block detail
for the GIC100 is as follows:

word 1 X accel word2 Xaccel tag = x000d

3 Z accel 4 Z accel tag = x0009
5 Y accel 6 Y accel tag = x000b
7 Y gyro 8 Y gyro tag = x000e
9 Z gyro 10 Z gyro tag = x000a
11 X gyro 12 X gyro tag = x000c
13 option time 14 optional time

One word consists of a 2 byte integer.

To convert accelerometer values to m/s/s they must be
multiplied by 1.1963e-1, and the gyros must be
multiplied by 1.28e-3 to convert them to rad/s.

DSTO-GD-0081

Fast Data Block:

Intermediate Data Block:

A block of data containing 2 n (n =1, 2, 3,..) IMU
Blocks which is the minimum required to perform a
single fast rate calculation.

A block of data containing FL_PER_IL number of Fast
Data Blocks. This is the amount of data that must be
processed before an Intermediate rate calculations will
be performed.

IMU Test Block: A single block of data containing 3 accelerometer
values and 3 gyro values. The values have been
generated by a program that calculates the exact
accelerometer and gyro values for a defined motion.
The format of the IMU Test Block is as follows:

word 1 X accel

2 Y accel

3 Z accel

4 X Gyro

5 Y Gyro

6 Z Gyro
One word consists of an 8 byte double floating point.
The values are already in m/s/s and rad/s for
accelerometers and gyros respectively.

Auspace Data: The relevant data required by version I.G_F2 ACPPis
contained in "message 100". This message is in a binary
form. Its format is as follows.

Byte No. Name Type Data
1 Start Byte 1 Byte 02 hex
2 Header 1 Byte CC hex
3-4 Receiver ID 2 Byte Integer 000 - 999 decimal
5-6 Time Stamp, Week No. 2 Byte Integer Standard GPS Week Number
7-10 Time Stamp, TOW 4 Byte Float Seconds
11-15 Satellite Numbers 5 x 1 Byte Integers Satellites used by KF
16-19 Position, Latitude 4 Byte Float Radians, WGS 84
20-23 Position, Longitude 4 Byte Float Radians, WGS 84
24 - 27 Position, Altitude 4 Byte Float Radians, WGS 84
28-31 Velocity, North 4 Byte Float Meters/Sec
32-35 Velocity, East 4 Byte Float Meters/Sec
36 -39 Velocity, Up 4 Byte Float Meters/Sec
40 CheckSum 1 Byte Integer Sum of bytes 3 to 39
41 End Byte 1 Byte 03 hex

24

Trimble Data: The relevant data required by version I_G_F2_T.CPP is
contained in two lines of text, with a constant number
of characters, generated by the Trimble receiver. These
are as follows:

N/S E/W M/F
Latitude North or Longitude East or meters
/\ South N\ West or feet
/ \ U S Ny \
FIGIXIGIXIP [n[n[s[s[mfm[, [T T T [.T [T [.I8T,T T I T T T.TT [I.TLT [117V].18]
I N — N, N — ~_
deg. minutes deg. minutes Altitude
(integer) (decimal) (integer) (decimal) (integer)

or kilometers/hour ~ Magnetic

! 1
(#IGIXISIOIG], [h[b]sTs[mm[, [[[T.T T [.T8[.T [[|.[e]
Line Identifier Time ‘Speed over Ground Heading
(decimal) deg. (integer)
buffer_filled: A flag used in version I_G_R1.CPP that is set to 1 by an

interrupt function when an Intermediate Data Block
has been passed to memory via the DMA controller.

TIME_DATA_FLAG: Flag in the file data version of IMU.H (see sect. 4.1) that
‘ when equal to 1 allows the handling of IMU blocks that
include a time stamp at the end.

|
K/M/k ™
knots, miles/hour, True or

DSTO-GD-0081

25

DSTO-GD-0081

DISTRIBUTION LIST

Low Cost INS-GPS Integration for Navigation (INS Software Implementation)
A General Document.

N. Luckman
DEFENCE ORGANISATION
Defence Science and Technology Organisation
Chief Defence Scientist]
FAS Science Policy } shared copy
AS Science Industry Interaction J
AS Science Corporate Management

Counsellor Defence Science, London (Doc Data Sheet only)

Counsellor Defence Science, Washington

Scientific Adviser to Thailand MRD (Doc Data Sheet only)

Senior Defence Scientific Adviser/ScientificAdviser Policy and Command (shared
copy)

Navy Scientific Adviser

Scientific Adviser - Army

Air Force Scientific Adviser

Director Trials

Electronics and Surveillance Research Laboratory
Director (1 copy)

. Aeronautical and Maritime Research Laboratory
Director

Chief, Weapons Systems Division and Research Leaders shared copy
HGC

Dave Hards, Guidance & Control Group

Ashley Martin, Guidance & Control Group

Sanjay Mazumdar, Guidance & Control Group

Nick Luckman (author), Guidance & Control Group

DSTO Library
Library Fishermens Bend

Library Maribyrnong
Main Library DSTOS (2 copies)
Library, MOD, Pyrmont (Doc Data Sheet only)
Defence Central
OIC TRS, Defence Central Library
Officer in Charge, Document Exchange Centre (DEC), 1 copy
DEC requires the following copies of public release reports to meet exchange
agreements under their management:
*US Defence Technical Information Centre, 2 copies
*UK Defence Research Information Centre, 2 copies
*Canada Defence Scientific Information Service
*NZ Defence Information Centre
National Library of Australia

DSTO-GD-0081

Defence Intelligence Organisation
Library, Defence Signals Directorate (Doc Data Sheet only)

Air Force
Director General Force Development (Air)

Army
Director General Force Development (Land)

ABCA Office, G-1-34, Russell Offices, Canberra (4 copies)

SO (Science), HQ 1 Division, Milpo, Enoggera, Qld 4057 (Doc Data Sheet)

NAPOC QWG Engineer NBCD c/- DENGRS-A, HQ Engineer Centre Liverpool
Military Area, NSW 2174 (Doc Data Sheet)

Navy
Director General Force Development (Sea),
Director Combat Force Development (Sea),
Director Capability Development Analysis (Sea),
SO (Science), Director of Naval Warfare, Maritime Headquarters Annex, Garden

Island, NSW 2000.

UNIVERSITIES AND COLLEGES
Australian Defence Force Academy Library
Senior Librarian, Hargrave Library, Monash University

OTHER ORGANISATIONS
NASA (Canberra)
AGPS

ABSTRACTING AND INFORMATION ORGANISATIONS
INSPEC: Acquisitions Section Institution of Electrical Engineers
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
American Society for Metals
Documents Librarian, The Center for Research Libraries, US

INFORMATION EXCHANGE AGREEMENT PARTNERS
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and Technology, US

SPARES (10 copies)

Total 60 copies

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF
DOCUMENT)
Commercial-in-Confidence
2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
Low Cost INS-GPS Integration for Navigation (INS Software CLASSIFICATION)
Implementation)
Document (9)]
Title)
Abstract 9)]
4. AUTHOR(S) 5. CORPORATE AUTHOR
N. Luckman Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Vic 3001
6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-GD-0081 AR-009-692 General Document March 1996
8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF
J 9505-8-26 ADA93/276 ADFA 30 REFERENCES
2
13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY
To be reviewed March 1999. Chief, Weapons Systems Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600

16. DELIBERATE ANNOUNCEMENT

No limitations

17. CASUAL ANNOUNCEMENT Yes

18. DEFTEST DESCRIPTORS

Global Positioning System
Inertial Navigation
Inertial measurement units
Algorithms

Computer Programs

19. ABSTRACT

This document describes several versions of software that have been developed to implement an Inertial
Navigation System algorithm. The form of the algorithm is intended to facilitate the combining of Global
Positioning System data into the INS solution, and a simple example (position and velocity reset) is
included in the software.

Page classification: UNCLASSIFIED

